UCEpic : Unifying Aspect Planning and Lexical Constraints for Generating Explanation Recommendation

Advisor : Jia-Ling, Koh

Speaker : Shu-Ming Yu

Source : KDD' 23

Date: 2023/09/26

Outline

Introduction

- Method
- Experiment
- Conclusion

Explanation Recommendation

 Generating reasonable sentences as explanations of recommended items for users

Restaurant

• The generator is based on natural language generation models

Input / Output

Input:

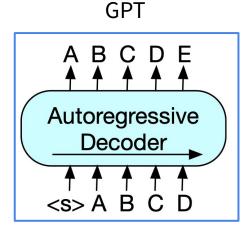
- Historical review profile of **user** *u* and **item** *i*
 - $\mathbb{R}^{u}, \mathbb{R}^{i}$
- Aspects extract from review for **user** *u* and **item** *i*
 - A^{ui}
- Lexical constraints (e.g., keywords) for **user** *u* and **item** *i*
 - C^{ui}

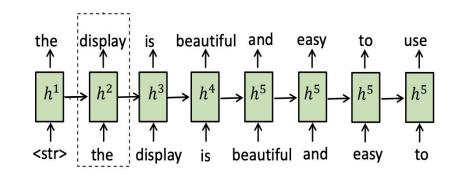
Output:

- Generated explanation of **user** *u* to **item** *i*
 - E^{ui}

Generation framework

Auto-regressive generation

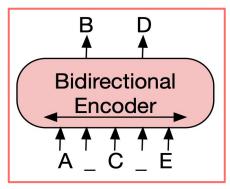




Generation framework

Insertion-based generation

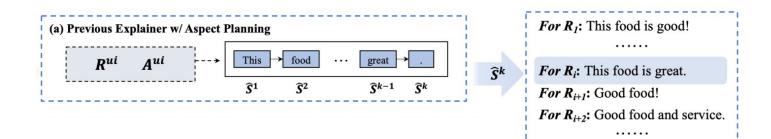
BERT



Stage	Generated text sequence
$0(X^0)$	pepper chicken
$1(X^{1})$	pepper sauce chicken
$2(X^2)$	spicy pepper sauce chicken

Aspect planning

- Aspects (e.g., **display** for a TV) mostly control the high-level sentiment
- Disadvantage :
 - Generating too general sentences (e.g., "good screen!")
 - Generating with inaccurate details (e.g., "2K screen" for a 4K TV)



Lexical constraint

- Requiring the generated sentence contain the lexical constraints (e.g., keywords)
- Disadvantage:
 - Model tends to generate similar text
 - Struggle to include specific information in explanation

Keyword : 'pepper chicken'

Stage	Generated text sequence
$0(X^0)$	pepper chicken
$1(X^{1})$	pepper sauce chicken
$2(X^2)$	spicy pepper sauce chicken

Outline

- Introduction
- Method
- Experiment
- Conclusion

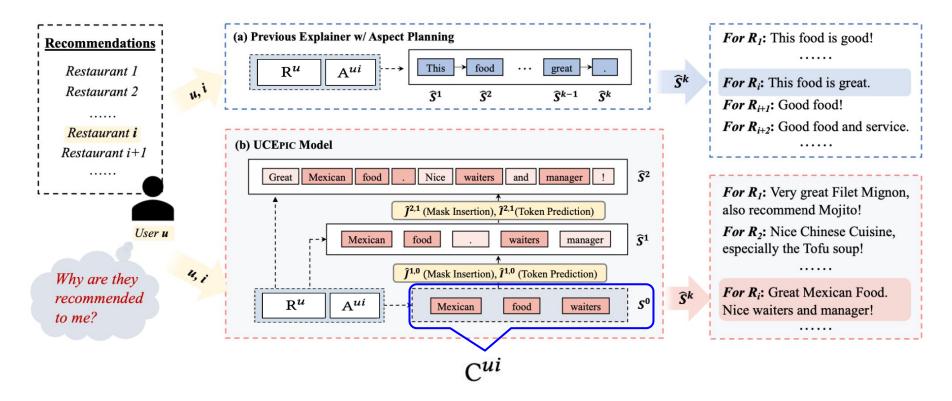
Input / Output

Input:

- Historical review profile of **user** *u* and **item** *i*
 - $\mathbb{R}^{u}, \mathbb{R}^{i}$
- Aspects extract from review for **user** *u* and **item** *i*
 - A^{ui}
- Lexical constraints (e.g., keywords) for **user** *u* and **item** *i*
 - C^{ui}

Output:

- Generated explanation of **user** *u* to **item** *i*
 - E^{ui}

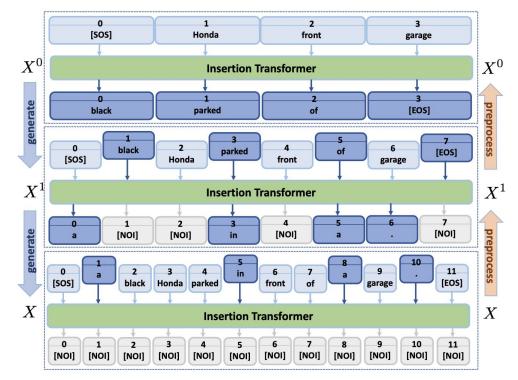


Training step

- Pre-train
 - data construction
 - training
- Fine-tune
 - Only aspect planning
 - Lexical constraints

Data construction

- Insertion-based generation
 - Generate
 - Preprocess



Data construction

- S^K : original sentence
- $I^{K,K-1}$: random **mask** some token from S^K by p 0.2
- $J^{K,K-1}$: recording the mask position and length
- S^{K-1} : masked sentence
- **S**⁰ : lexical constraints

Data construction

S(k)	<s></s>	what	а	cute	baby	
l(k, k-1)	<s></s>	what	[mask]	[mask]	baby	
J(k, k-1)	0	2	0			
S(k-1)	<s></s>	what	baby			
S(0)	<s></s>	baby				

$$(S^{k-1}, I^{k,k-1}, J^{k,k-1}, S^k)$$

Pre-training

• Input:
$$(\hat{S}^{k-1}, \hat{I}^{k,k-1}, \hat{J}^{k,k-1}, \hat{S}^k)$$

• **Learning** how to generate S^K from S^{K-1}

Algorithm 1 Insertion in the k-th Stage

procedure INSERTION(\hat{S}^{k-1}) $\hat{J}^{k,k-1} \leftarrow$ predict number of masks from \hat{S}^{k-1} via eq. (1); $\hat{I}^{k,k-1} \leftarrow$ build intermediate sequence from $\hat{J}^{k,k-1}$ and \hat{S}^{k-1} ; $\hat{S}^{k} \leftarrow$ predict masked tokens in $\hat{I}^{k,k-1}$ via eq. (2); **return** predicted sequence \hat{S}^{k} ;

Pre-training

* MI : mask insertion TP : token prediction

• Input:
$$(\hat{S}^{k-1}, \hat{I}^{k,k-1}, \hat{J}^{k,k-1}, \hat{S}^k)$$

Linear projection

$$y_{MI} = \mathbf{H}_{MI}(\mathbf{D}(\hat{S}^{k-1})), \ \hat{J}^{k,k-1} = \operatorname{argmax}(y_{MI}), \ y_{MI} \in \mathbb{R}^{l_s \times d_{ins}} - \operatorname{Max number of insert}_{= (1/(1-p))^* \operatorname{len}(\hat{S}^{K-1})}$$

MLP bi-directional transformer $y_{TP} = H_{TP}(D(\hat{I}^{k,k-1})), \hat{S}^{k} = \operatorname{argmax}(y_{TP}), y_{TP} \in \mathbb{R}^{l_{I}} \times d_{vocab}$ Size of vocab \Rightarrow decided what words to insert $\lim_{l \to 0} (\hat{I}^{K,K-1})$

Fine-tune

• Input:
$$(S_{+}^{k-1}, I_{+}^{k,k-1}, J_{+}^{k,k-1}, S_{+}^{k})$$

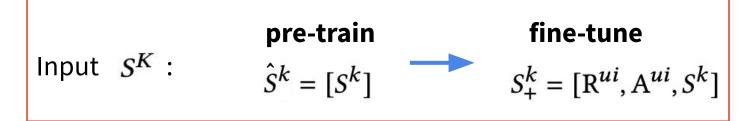
• Fine-tune the model **with personalized references and aspect information**.

$$S_{+}^{k} = [\mathbb{R}^{ui}, \mathbb{A}^{ui}, S^{k}]$$

= $[w_{0}^{r}, \dots, w_{|\mathbb{R}^{ui}|}^{r}, w_{0}^{a}, \dots, w_{|\mathbb{A}^{ui}|}^{a}, w_{0}, \dots, w_{|S^{k}|}]$
 $J_{+}^{k,k-1} = [\mathbf{0}_{|\mathbb{R}^{ui}|}, \mathbf{0}_{|\mathbb{A}^{ui}|}, J^{k,k-1}]$
 $I_{+}^{k,k-1} = [\mathbb{R}^{ui}, \mathbb{A}^{ui}, I^{k,k-1}]$

Fine-tune

• Input:
$$(S_{+}^{k-1}, I_{+}^{k,k-1}, J_{+}^{k,k-1}, S_{+}^{k})$$



$$[O_{S}^{R^{ui}}, O_{S}^{A^{ui}}, O^{S^{k}}] = \mathbf{D}(\hat{S}_{+}^{k}) \qquad y_{MI} = \mathbf{H}_{MI}(O^{S^{k}})$$
$$[O_{I}^{R^{ui}}, O_{I}^{A^{ui}}, O^{I^{k,k-1}}] = \mathbf{D}(\hat{I}_{+}^{k,k-1}) \qquad y_{TP} = \mathbf{H}_{TP}(O^{I^{k,k-1}})$$

Fine-tune

- Input: $(S_{+}^{k-1}, I_{+}^{k,k-1}, J_{+}^{k,k-1}, S_{+}^{k})$
 - aspect starting stage (no existing tokens)

$$S_{+a}^0 = [\mathbf{R}^{ui}, \mathbf{A}^{ui}]$$

- lexical constraint starting stage

$$S^{0}_{+l} = [\mathbb{R}^{ui}, \mathbb{A}^{pad}, \mathbb{C}^{ui}]$$
 special aspect for lexical constraints

$$\mathcal{L} = -\log p(S_{+}^{k}|S_{+}^{k-1})$$

= -log $p(S_{+}^{k}|I_{+}^{k,k-1}) \underbrace{p(J_{+}^{k,k-1}|S_{+}^{k-1})}_{\text{Token prediction}} \underbrace{p(J_{+}^{k,k-1}|S_{+}^{k-1})}_{\text{Mask insertion}},$

Outline

- Introduction
- Method
- Experiment
- Conclusion

Experiment

Dataset

Use wikipedia for pre-training Fine-tune on 1. **RateBeer** : beer reviews from ratebeer 2. **Yelp** : restaurant reviews on Yelp

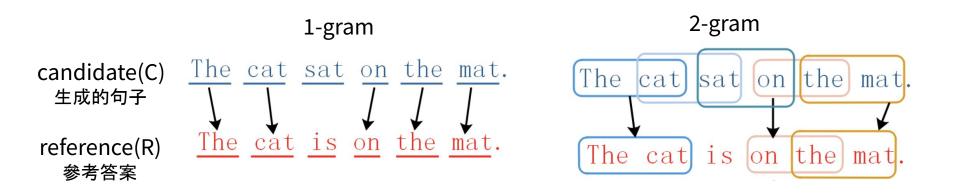
Dataset	Train	Dev	Test	#Users	#Items	#Aspects
RateBeer	16,839	1,473	912	4,385	6,183	8
Yelp	252,087	37,662	12,426	235,794	22,412	59

Experiment

Candidate: 生成的句子

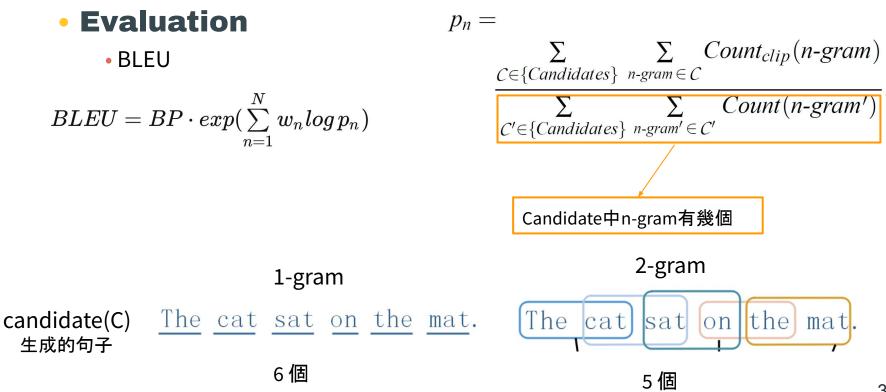
Reference: 參考答案

N-gram



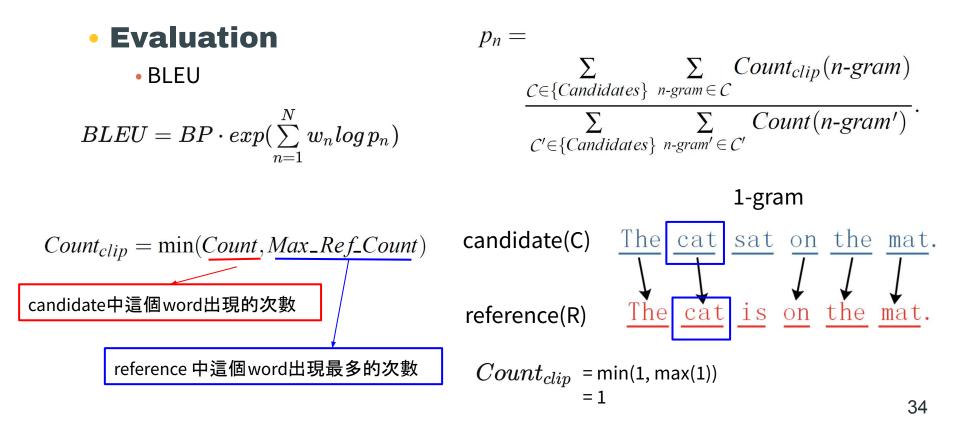
Experiment

Reference: 參考答案



Experiment

Reference: 參考答案



Experiment

Reference: 參考答案

Evaluation

BLEU

$$BLEU = BP \cdot exp(\sum\limits_{n=1}^N w_n log \, p_n)$$

 $p_n = \frac{\sum_{C \in \{Candidates\}} \sum_{n-gram \in C} Count_{clip}(n-gram)}{\sum_{C' \in \{Candidates\}} \sum_{n-gram' \in C'} Count(n-gram')}.$

Candidate: the the the the the the the.	7個the
Reference 1: The cat is on the mat.	2個the

 $Count_{clip} = min(Count, Max_Ref_Count)$

candidate中這個word出現的次數

reference 中這個word出現最多的次數

$$Count_{clip} = min(7, max(2))$$
$$= 2$$

Experiment

Reference: 參考答案

Evaluation

BLEU

$$BLEU = BP \cdot exp(\sum\limits_{n=1}^N w_n log \, p_n)$$

 $p_n = \frac{\sum_{C \in \{Candidates\}} \sum_{n-gram \in C} Count_{clip}(n-gram)}{\sum_{C' \in \{Candidates\}} \sum_{n-gram' \in C'} Count(n-gram')}.$

Candidate: the the the the the the the.	7個the
Reference 1: The cat is on the mat.	2個the
Reference 2: There is a cat on the mat.	1個the

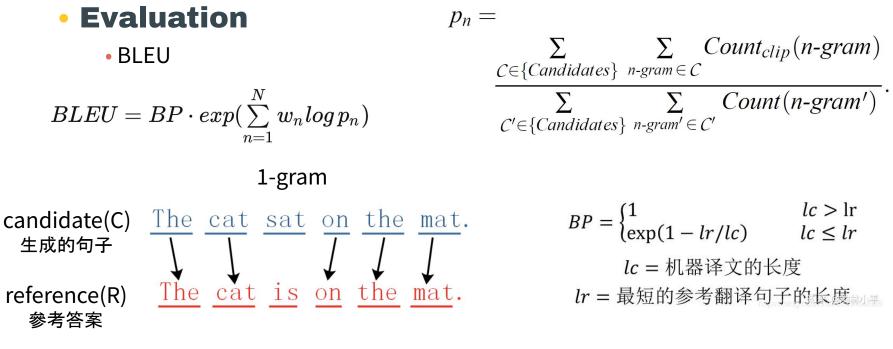
$$Count_{clip} = min(7, max(2, 1))$$

= 2

Count_{clip} = min(Count, Max_Ref_Count) candidate中這個word出現的次數 reference 中這個word出現最多的次數

Experiment

Reference: 參考答案



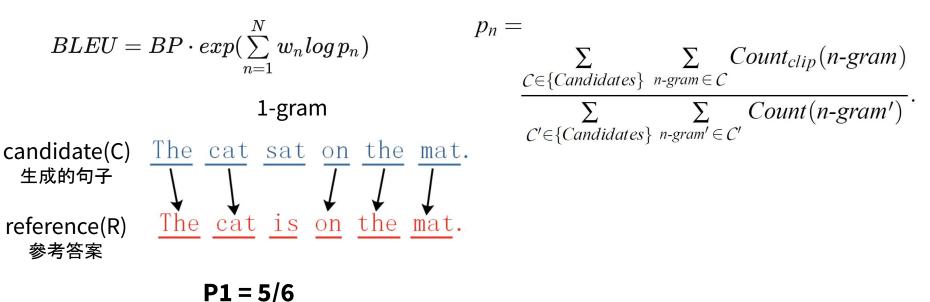
P1 = 5/6

Experiment

Reference: 參考答案

Evaluation

BLEU as precision



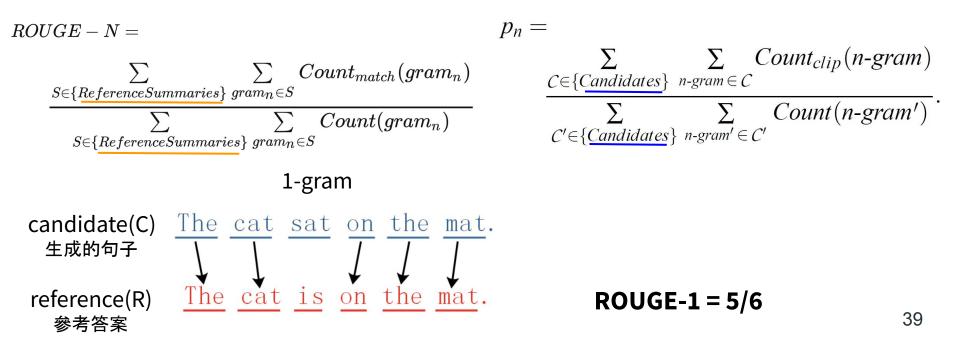
Experiment

Candidate: 生成的句子

Reference: 參考答案

Evaluation

• ROUGE-N



Experiment

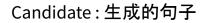
Reference: 參考答案

Evaluation

• ROUGE-L

 $ROUGE - L = \frac{LCS(X,Y)}{m}$ 1-gramLCS : longest common subsequencecandidate(C)
生成的句子The cat sat on the mat.m : len(reference)reference(R)
參考答案The cat is on the mat.

ROUGE-L = 5/6



Reference: 參考答案

- Evaluation
 - BLEU as precision
 - ROUGE as recall

Reference: 參考答案

Evaluation

- BLEU as precision
- ROUGE as recall
- METEOR

 $METEOR = (1 - pen) \times F_{means}$

$$F_{means} = \frac{PR}{\alpha P + (1-\alpha)R} \qquad \qquad \alpha = 0.5$$
P: precision
R: recall
$$F = F_{means} \text{ as F-1}$$

Reference: 參考答案

Evaluation

- BLEU as precision
- ROUGE as recall
- METEOR as F-1

$$Pen = \frac{\#chunks}{m}$$

$$METEOR = (1 - pen) \times F_{means} \qquad \text{m:number of match}$$

$$F_{means} = \frac{PR}{\alpha P + (1 - \alpha)R} \qquad 1 \text{-gram}$$

$$candidate(C) \qquad \text{The cat sat on the mat.}$$

$$\frac{\#chunks}{m}$$

$$reference(R) \qquad \text{The cat is on the mat.}$$

Experiment

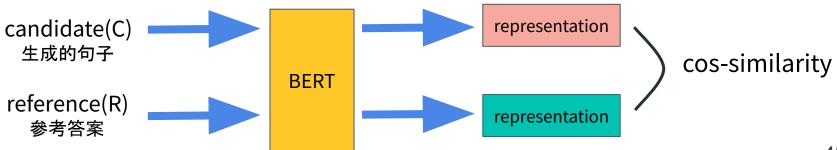
Evaluation

- BLEU as precision
- ROUGE as recall
- METEOR as F-1
- Distinct

Distinct-1 = 5/6

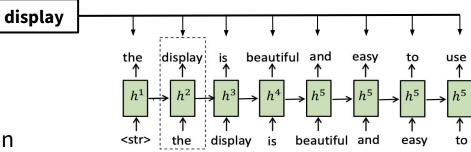
Evaluation

- BLEU as precision
- ROUGE as recall
- METEOR as F-1
- Distinct
- BERT-score



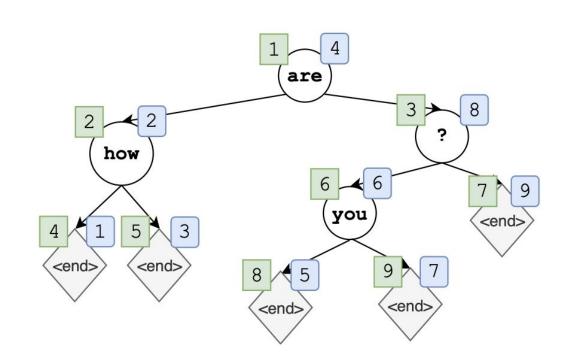
Baseline

- ExpansionNet
- Ref2Seq
- PETER
- ↑ Auto-regressive generation
- Insertion-based generation
- NMSTG
- POINTER
- CBART

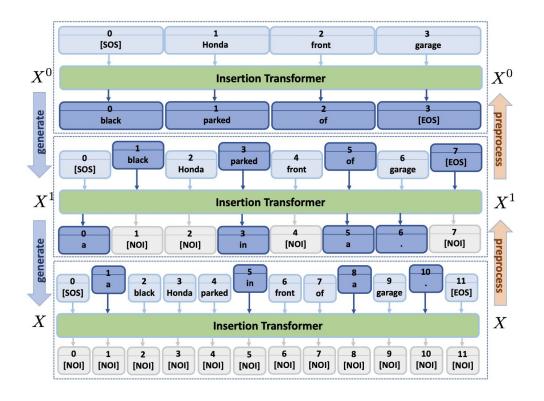


• Baseline

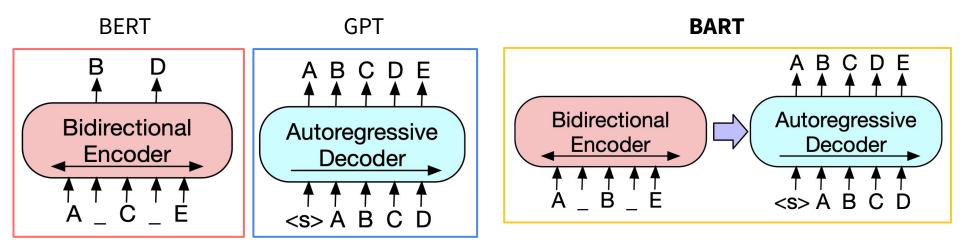
NMSTG



• POINTER



• CBART



Lexically constrain

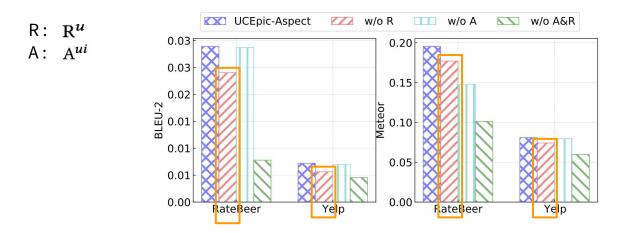
	RateBeer							Yelp						
Models	B-1	B-2	D-1	D-2	М	R	BS	B-1	B-2	D-1	D-2	М	R	BS
Human-Oracle	-	_	8.30	49.16	_	_	_	-		3.8	34.1	-	-	-
					Lexically	v constra	ined gene	eration						
ExpansionNet	5.41	0.49	0.97	4.91	6.09	5.55	76.14	1.49	0.08	0.40	1.90	2.19	1.93	73.68
Ref2Seq	17.94	4.50	1.09	5.49	17.03	15.17	83.72	6.38	0.77	0.51	3.64	7.02	10.58	82.88
PETER	15.03	2.46	2.04	11.40	9.49	13.27	79.08	7.59	1.32	1.52	8.70	7.64	12.24	80.89
NMSTG	22.82	2.30	6.02	50.39	15.17	15.35	82.31	13.67	0.77	4.57	57.02	9.64	11.13	80.80
POINTER	6.00	0.31	11.24	56.02	7.41	11.21	81.80	1.50	0.06	5.49	29.76	3.24	5.23	80.85
CBART	2.49	0.54	8.49	34.74	8.45	13.84	83.30	2.19	0.60	5.32	26.79	9.41	15.00	84.08
UCEpic	27.97	5.09	5.24	32.04	19.90	17.05	84.03	13.77	3.06	2.85	20.39	14.45	16.92	84.55

• aspect-planning v.s. lexically constrain

				RateBee	er						Yelp			
Models	B-1	B-2	D-1	D-2	М	R	BS	B-1	B-2	D-1	D-2	М	R	BS
Human-Oracle	_		8.30	49.16	_		-	-		3.8	34.1	-	-	-
					Aspect	-plannin	g genera	tion						
ExpansionNet	8.96	1.79	0.20	1.05	16.30	10.13	75.58	4.92	0.47	0.18	1.40	7.78	5.42	76.27
Ref2Seq	17.15	4.17	0.95	4.41	16.66	15.66	80.76	8.34	0.98	0.46	3.77	7.58	11.19	82.66
PETER	25.25	5.35	0.74	3.44	19.19	20.34	84.03	<u>14.26</u>	2.25	0.26	1.23	12.25	<u>14.75</u>	82.55
UCEpic	27.42	2.89	<u>4.49</u>	<u>29.23</u>	<u>19.54</u>	15.48	83.53	8.03	0.72	<u>1.89</u>	14.75	8.10	11.58	<u>83.53</u>
					Lexicall	y constra	ined gen	eration						
ExpansionNet	5.41	0.49	0.97	4.91	6.09	5.55	76.14	1.49	0.08	0.40	1.90	2.19	1.93	73.68
Ref2Seq	17.94	4.50	1.09	5.49	17.03	15.17	83.72	6.38	0.77	0.51	3.64	7.02	10.58	82.88
PETER	15.03	2.46	2.04	11.40	9.49	13.27	79.08	7.59	1.32	1.52	8.70	7.64	12.24	80.89
UCEpic	27.97	5.09	5.24	32.04	19.90	17.05	84.03	13.77	3.06	2.85	20.39	14.45	16.92	84.55

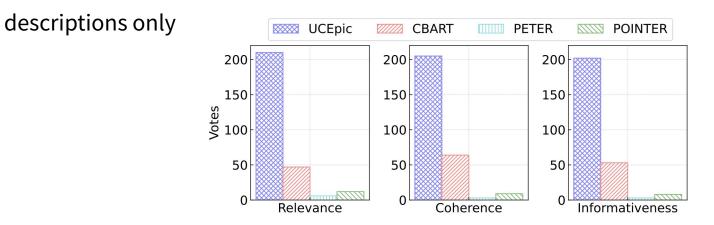
Å	Phrases	pepper chicken	north shore, meat			
	Human	Food was great. The pepper chicken is the best. This place is neat and clean. The staff are sweet. I recomend them to anyone!!	Great Italian food on the north shore ! Menu changes daily based on the ingredients they can get locally. Everything is organic and made "clean". There is no freezer on the property, so you know the meat was caught or prepared that day. The chef is also from Italy! I highly recommend!			
Auto-	Ref2Seq	best restaurant in town ! ! !	what a good place to eat in the middle of the area . the food was good and the service was good .			
regression PETER	PETER	This place is great! I love the food and the service is always great. I love the chicken and the chicken fried rice. I love this place.	The food was good, but the service was terrible. The kitchen was not very busy and the kitchen was not busy. The kitchen was very busy and the kitchen was not busy.			
Insertion-	POINTER	pepper sauce chicken !	one of the best restaurants in the north as far as i love the south shore . great meat !!			
based	CBART	Great spicy pepper buffalo wings and chicken wings.	Best pizza on the north shore ever! Meatloaf is to die for, especially with meat lovers.			
	UCEpic	Great Chinese restaurant, really great food! The customer service are amazing! Everything is delicious and delicious! I think this local red hot pepper chicken is the best.	I had the best Italian north shore food. The service is great, meat that is fresh and delicious. Highly recommend!			

Reviews' information is very important for generation



Human evaluation

- Relevance : relevant to the ground-truth explanations
- Coherence : logical and fluent
- Informativeness : contains specific information, instead of vague



Select The Best Generated Explanation

Please check the definitions before selecting the best explanation:

- Relevance: details in the generated explanation are consistent and relevant to the ground-truth explanation's.
- Cohrerent: sentences in the generated explanation are logical and fluent.
- Informativeness: generated explanation contains specific information, instead of vauge descriptions only.

Explanations:

Ground Truth Explanation	
Best theater ever. Great seats great service. You gonna spend some money but it's worth it if your a movie buff. Got to go	
Generated Explanation 1	
Great food! Great atmosphere! The seats are very comfortable.	
Generated Explanation 2	
food great food seats !	
Generated Explanation 3	
Great food. Great seats, excellent food and good drinks. A great service!	
Generated Explanation 4	
great great	

Questions:

Which one is the most relevant explanation ?

O Explanation 1 O Explanation 2 O Explanation 3 O Explanation 4

Which one is the most coherent explanation ?

O Explanation 1 O Explanation 2 O Explanation 3 O Explanation 4

Which one is the most informative explanation ?

O Explanation 1 O Explanation 2 O Explanation 3 O Explanation 4

Submit

Conclusion

- They unify aspect planning and lexical constraints.
- Compared to existing methods, the quality of the generated explanations is improving.